Enrollment No:

Exam Seat No:____

C. U. SHAH UNIVERSITY

Winter Examination-2019

Subject Name: Engineering Mathematics – 3

Subject Code: 4TE03EMT2 Branch: B. Tech (All)

Semester: 3 Date: 13/11/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

a) If f(x) = x is represented by Fourier series in $(-\pi, \pi)$ then a_0 equal to

(A)
$$\frac{\pi}{2}$$
 (B) π (C) 0 (D) 2π

b) If $f(x) = x^2$ is represented by Fourier series in $(-\pi, \pi)$ then b_n equal to

(A)
$$\frac{\pi^2}{3}$$
 (B) 0 (C) $\frac{2\pi^2}{3}$ (D) $\frac{\pi^2}{6}$

- c) Fourier expansion of an even function f(x) in $(-\pi, \pi)$ has
 - (A) only sine terms (B) only cosine terms
 - (C) both sine and cosine terms (D) None of these
- d) Inverse Laplace transform of $\frac{1}{(S+4)^6}$ is

(A)
$$e^{-6t} \frac{t^4}{4!}$$
 (B) $e^{-4t} \frac{t^6}{6!}$ (C) $e^{-4t} \frac{t^5}{5!}$ (D) $e^{-4t} \frac{t^6}{5!}$

e) Laplace transform of C^{t+1} is

(A)
$$\frac{1}{s-c}$$
 (B) $\frac{c}{s-\log c}$ $\left(s > \log c\right)$ (C) $\frac{c^2}{s+\log c}$ (D) none of these

f) Laplace transform of $t \sin at$ is

(A)
$$\frac{2as}{\left(s^2 + a^2\right)^2}$$
 (B) $\frac{as}{\left(s^2 + a^2\right)^2}$ (C) $\frac{2s}{\left(s^2 + a^2\right)^2}$ (D) $\frac{2as}{s^2 + a^2}$

g) The C. F. of the differential equation $(D^2 + 3D + 2)y = e^{2x}$ is

(A)
$$c_1 e^x + c_2 e^{2x}$$
 (B) $c_1 e^{-x} + c_2 e^{-2x}$ (C) $c_1 e^{-x} + c_2 e^{2x}$ (D) $c_1 e^x + c_2 e^{-2x}$

h) The P. I. of $(D^2 - 4)y = 2^x$ is

(A)
$$\frac{2^x}{(\log 2)^2 + 4}$$
 (B) $\frac{2^x}{(\log 2)^2 - 4}$ (C) $\frac{2^x}{\log 2 - 4}$ (D) none of these

i) The P. I. of $(D^2 + a^2)y = \sin ax$ is

(A)
$$-\frac{x}{2a}\cos ax$$
 (B) $\frac{x}{2a}\cos ax$ (C) $-\frac{ax}{2}\cos ax$ (D) $\frac{ax}{2}\cos ax$

- **j**) Eliminating the arbitrary constants, a and b from $x^2 + y^2 + (z c)^2 = a^2$, the partial differential equation formed is
 - (A) xp = yq (B) xq = yp (C) z = pq (D) None of these
- **k)** The general solution of the equation (y-z)p+(z-x)q=x-y is

(A)
$$F(x^2 + y^2 + z^2, x + y + z) = 0$$
 (B) $F(xyz, x^2 + y^2 + z^2) = 0$

(C)
$$F(xy, x^2 + y^2 + z^2) = 0$$
 (D) none of these

1) Particular integral of $(2D^2 - 3DD' + D'^2)z = e^{x+2y}$ is

(A)
$$xe^{x+2y}$$
 (B) $\frac{1}{2}e^{x+2y}$ (C) $-\frac{x}{2}e^{x+2y}$ (D) $\frac{x^2}{2}e^{x+2y}$

m) Iterative formula for finding the square root of *N* by Newton-Raphson method is

(A)
$$x_{i+1} = \frac{1}{2} \left(x_i - \frac{N}{x_i} \right) \left(i = 0, 1, 2, \dots \right)$$
 (B) $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right) \left(i = 0, 1, 2, \dots \right)$

(C)
$$x_{i+1} = x_i (2 - Nx_i)$$
 (i = 0,1,2,....) (D) none of these

n) The interval [a, b] on which fixed point iteration will converge for the equation $x = \frac{5}{x^2} + 2$ is

(A)
$$[2.5, 3]$$
 (B) $[2, 2.1]$ (C) $[2, 3]$ (D) none of these

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

- a) Perform the five iteration of the Bisection method to obtain a root of the equation $f(x) = \cos x xe^x$. (5)
- **b**) Compute the real root of $x \log_{10} x 1.2 = 0$ correct to four decimal places using False position method. (5)

c) Find the Laplace transform of
$$f(t)$$
 defined as $f(t) = \begin{cases} t & 0 < t < 4 \\ 5 & t > 4 \end{cases}$. (4)

Q-3 Attempt all questions (14)

- Express $f(x) = \frac{1}{4}(\pi x)^2$ as a Fourier series with period 2π to be valid in the interval 0 to 2π .
- **b)** Obtain Fourier series for the function $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$ (5)

(14)

	c)	Evaluate $\sqrt{5}$ correct to three decimal places using Newton-Raphson method.	(4)
Q-4		Attempt all questions	(14)
	a)	Using Laplace transform method solve:	(5)
		$y'' + 3y' + 2y = e^t$, $y(0) = 1$, $y'(0) = 0$	
	b)	Using convolution theorem, evaluate $L^{-1}\left\{\frac{s}{\left(s^2+a^2\right)^2}\right\}$.	(5)
	c)	Solve: $\frac{\partial^2 \mathbf{z}}{\partial \mathbf{x} \partial \mathbf{y}} = \mathbf{x}^3 + \mathbf{y}^3$	(4)
Q-5		Attempt all questions	(14)
	a)	Evaluate: $L^{-1}\left[\frac{s+2}{(s+3)(s+1)^3}\right]$	(5)
	b)	Solve: $(D^2 - 4D + 3)y = \sin 3x \cos 2x$	(5)
	c)	Solve: $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$	(4)
Q-6		Attempt all questions	(14)
	a)	Solve: $(D^2 + 5D + 4)y = x^2 + 7x + 9$	(5)
	b)	If $f(x) = x$, $0 < x < \frac{\pi}{2}$	(5)
		$=\pi-x, \ \frac{\pi}{2} < x < \pi$	
		then show that $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left(\frac{\cos 2x}{1^2} + \frac{\cos 6x}{3^2} + \frac{\cos 10x}{5^2} + \dots \right)$.	
	c)	Solve: $L\left(\frac{\cos 2t - \cos 3t}{t}\right)$	(4)
Q-7		Attempt all questions	(14)
	a)	Using the method of variation of parameters,	(5)
		Solve: $y'' + 4y' + 4y = \frac{e^{-2x}}{x^2}$	
		Solve: $(2x+3)^2 \frac{d^2y}{dx^2} - 2(2x+3)\frac{dy}{dx} - 12y = 6x$	(5)
	c)	Solve: $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$	(4)
Q-8		Attempt all questions	(14)
	a)	Solve by the method of separation of variables	(7)
	• `	$4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u \text{, given that } u = 3e^{-y} - e^{-5y} \text{ when } x = 0.$	(= `
	b)	Determine the Fourier series up to and including the second harmonic to represent the periodic function $y = f(x)$ defined by the table of values given	(7)
		below. $f(x) = f(x+2\pi)$	

	ON C	y												
b)	Determine the Fourier series up to and including the second harmonic to												(7)	
	represer	nt the j	periodi	ic fund	ction	y = f(.	x) def	ined l	y the	table	of va	alues g	given	
	below. $f(x) = f(x+2\pi)$													
	34°	0	30	60	90	120	150	180	210	240	270	300	330	

x°	0	30	60	90	120	150	180	210	240	270	300	330
f(x)	0.5	0.8	1.4	2.0	1.9	1.4	1.2	1.4	1.1	0.5	0.3	0.4

